Reactive Sediment Cap at East Branch Grand Calumet River

Evaluation and Confirmation of As-Placed Design Characteristics of Materials

Battelle The Business of Innovation

Ninth International Conference on Remediation and Management of Contaminated Sediments

January 9-12, 2017 | New Orleans, LA

Authors:

Great Lakes Sediment Remediation, LLC (GLSR):

- J.F. Brennan Company, Inc., Tyler Lee
- Natural Resource Technology, Inc., Eric Hritsuk
- Environmental Restoration, LLC Tetra Tech, Inc.: Gary Braun & Keir Craigie SAO Environmental Consulting: Joe Jersak, AquaBlok Ltd: John Hull & John Collins

Grand Calumet River Great Lakes Legacy Act (GLLA) Clean-up Grand Calumet River Area of Concern

East Branch (Zone B) of the Grand Calumet River:

•1.8-mile stretch of the river from Indianapolis Boulevard to Holhman Avenue

•350,000 cubic yards of sediment were removed
•A cap was placed over the dredged sediment.
•Near shore habitats were restored with native plants
•Completed in 2015.

Mix of Historic Industrial Use Drives **Target Contaminants & Remedy**

- PAHs primary driver of remediation
- Remedy Cap Objectives

Total PAH Bulk Sediment Concentration in bioturbation zone	27.0 mg/kg – dw (3.4 mg/kg-dw 1 %OC)
Cap Design Life	100 yrs

STEEL INDUSTRY	RESIDENTIAL OR OPEN WATER
INDUSTRY-Other than steel or petrochemical	WASTE TREATMENT OR DISPOSAL
PETROCHEMICAL INDUSTRY	NATURAL

Reactive Cap Model & Design Considerations

- Model Assumes <u>Uniform</u>
 <u>Distribution</u> of Organoclay within Layer
- Thickness = <u>Residence Time</u> for Adsorption (Hydrologic Conditions)
- Adsorption Capacity of Organoclay <u>Expressed by</u> <u>Partition Coefficient</u>
- Adsorption Capacity Must Protect from Possible <u>Isolated Seep Zones</u>
- Material Approach Must Allow for <u>Reduction in</u> <u>Permeability</u> Due to Swell of Organoclay

not to scale

Data to Develop & Run Cap Model

- Contaminant characteristics
 - Site specific data
- Sediment characteristics
 - Site specific data
- Active layer characteristics
 - Material characteristics (study/literature based data)
- Conventional cap characteristics

TETRA TECH

TABLE 1B DESIGN SPECIFIC MODEL INPUTS

Material Property	Value	Unit
Effective adsorption partition coefficient (K ₄)*		
Area A (STA 5+54 to STA 55+00)	19,950	L/Kg
Area B (STA 55+00 to STA 95+15)	39,810	L/Kg
Active layer thickness		
Area A (STA 5+54 to STA 55+00)	10.14	cm
Area B (STA 55+00 to STA 95+15)	10.14	cm
Active adsorbent loading		
Area A (STA 5+54 to STA 55+00)	4.1	kg/m2/cm
Area B (STA 55+00 to STA 95+15)	1.37	kg/m2/cm

Initial Model Output Results

			Reactive layer			Sand thickness		Initial	Surface	sediment (0-10	cm) Average bull	concentration (
			Loading			(cm)		Porewater				
		For model	lb Oclay/cf	% Oclay by	thickness	1		conc(C0)(ug/L)				
Case	Media	(kg/m2/cm		wt	(cm)		Log Koc		Conc at 100 yrs	Conc at 200 yrs	Conc at 300 yrs	Conc at 400 yrs
Area	A:											
Exten	t of remova	l ranges fron	n approx 1 fee	t to potentiall	y 6 feet of :	sediment to reac	h a targe	et elevation of 573	B feet			
Porev	vater conce	ntrations ran	ge from 1.6 ug	g/L to 958.2 ug	g/L with a r	mean of 195.8 ug	/Land a	95 UCL of 427.5 u	ıg/L			
Koc ir	ndex ranges	from 3.7 to 5	5.0 with a mea	n of 4.3								
Activ	e Layer Mix	of Organocla	y and granula	r media								
	Oclay	2.28	14.20	14%	7.6	30.5	4.3	427.5	24.75	281.05	439.28	482.73
	Oclay	1.52	9.47	9%	15.22	30.5	4.3	427.5	0.74	131.86	373.12	468.94
	Oclay	5.32	33.14	45%	7.6	30.5	4.3	427.5	0.02	15.03	103.24	230.87
	Oclay	2.28	14.20	14%	15.22	30.5	4.3	427.5	< 0.01	14.47	142.16	317.19
***	Oclay	3.8	23.67	27%	15.22	30.5	3.7	958.2	25.23	215.75	258.64	261.60
	AC	1.95	na	na	1	30.5	4.3	427.5	71.29	209.75	300.43	357.02
Area	В:											
Exten	t of remova	l ranges fron	n none to 1 fee	t of sediment	to reach a	target elevation	of 573 fe	eet				
Porev	vater conce	ntrations ran	ge from < 1 ug	ı/L to 119.9 ug	ı/L with a r	mean of 23.76 ug	/L and a	95 UCL of 41 ug/l	Ĺ			
Koc ir	ndex ranges	from 3.8 to 5	5.6 with a mea	n of 4.6								
Activ	e Layer Mix	of Organocla	y and granula	r media								
	Oclay	0.76	4.73	4%	7.6	30.5	4.6	41	20.95	78.90	90.14	91.29
	Oclay	0 76	4.73	4%	15.22	30.5	4.6	41	0.11	23.04	67.93	86.38
	Oclay	1.52	9.47	9%	7.6	30.5	4.6	41	0.67	26.21	62.56	81.30
	Oclay	2.28	14.20	14%	7.6	30.5	4.6	41	0.02	5.63	28.73	54.64
	Oclay	2.28	14.20	14%	15.22	30.5	4.6	41	< 0.01	< 0.01	0.23	3.13
***	Oclay	3.8	23.67	27%	15.22	30.5	3.8	119.9	0.81	23.75	38.28	40.70
	AC	1.95	na	na	1	30.5	4.6	41	11.76	37.63	55.42	66.74

EBGCR Cap Specification

2.2 ADSORPTIVE LAYER – BASE DESIGN

The adsorptive layer shall consist of *virgin organoclay bound to an aggregate material substrate*. The properties of the organoclay are summarized below:

- The organoclay shall have minimal swelling after placement and shall have a minimum predicted long-term permeability of 10-3 centimeters per second (cm/s)
- The organoclay shall have a documented partition coefficient (Kd) of at least 50,000 L/Kg for light weight PAHs (eg. phenanthrene) and 350,000 L/Kg for mid to heavy weight PAHs (eg. pyrene).
- The organoclay will have a minimum quaternary amine loading of 25%.
- The organoclay shall applied such that the loading is at a minimum 4.1 kg/m2/cm (25.5 lb/ft3) in Area A and 1.37 kg/m2/cm (8.5 lb/ft3) in Area B.
- Aggregate material used in the adsorptive layer shall meet the gradation shown in Table 2

Overview of Capping Material AquaGATE⁺ ORGANOCLAY[™]

Uniform Placement of Small Quantities of High-Value Material

- Uniform Distribution of Reactive Material Within Layer
- Positive Placement Through Water No Drift / Separation
- Adsorbs Approximately 15% by Weight Pure Phase Oil
- High Surface Area / Adsorption Capacity
- Flexible/Rapid Installation Range of Methods/Equipment

Shipment / On-Site Stockpile

This Project is Believed to be the <u>Largest Installation of</u> <u>an Organoclay-Based</u> <u>Active Cap</u> for Contaminated Sediment Remediation

- Deliveries in 2,500lb Bulk Bags
- Approximately 4-5 Trucks/Day – at 22 tons
- Stockpile protected During
 Storage
- Placement Began in August – Completed November
- Production = + <u>16,600</u> <u>tons</u>

J.F. Brennan – Broadcast Capping System (BCS[™])

- Able to accurately place over soft sediment with limited intermixing
- Limits resuspension of in-situ sediments
- Onboard tracking system records thickness, volume, and position of material placement
- Can accurately spread materials in very thin lifts, while achieving even distribution.

Post Placement QA/QC

Was the <u>Quantity</u> of Reactive Material Assumed in the Design Successfully Placed on the Sediment Surface?

		B-Cap						A-Cap											
Bucket Number	ID #	Fines %	Ave. Fines	lb/cu ft		Bucket Number	ID #	Fines %	Ave. Fines	lb/cu ft									
		12.79%						39.63%											
1	092514465	15.87%	14.38%	14.04		5	100214689	27.49%	31.08%	25.64									
		14.48%						26.12%											
		6.37%						25.78%											
2	092614474	4.91%	5.36%	5.23		6	100814783	36.48%	31.15%	25.70									
		4.79%						31.18%											
		6.38%				7													
3	092914549	7.34%	8.82%	8.61			110614534	28.10%		23.19									
		12.75%																	
		8.66%	8.89%																
4	092914557	57 <mark>7.67%</mark> 8.89%8.6888		8.89%	8.89%	8.89%	8.89%	8.89%	8.89%	8.89%	8.89%	8.89% 8.6	8.89% 8.68 8 111114665	8.89% 8.68	39% 8.68	8 11111466	111114665	28.03%	
		10.34%																	
A	Verage Fines	5	9.36%			9	111814798	26.	78%	22.09									
Т	arget lb/cu f	t	7.0	- 7.2															
				/		A	verage Fine	5	29.0	03%									
Actual lb/cu ft		9.	14																
						Target lb/cu ft		21.45											
						A	Actual Ib/cu f	t	23	.95									

Specification: "The organoclay shall applied such that the loading is at a minimum 4.1 kg/m2/cm (21.45 lb/ft3) in Area A and 1.37 kg/m2/cm (8.5 lb/ft3) in Area B."

Post-Placement Active Material Properties Confirmation Testing & Analysis

Did the Reactive Material Placed on the Sediment Surface Retain the Adsorptive Properties Assumed in the Design?

#1 O	il Sorption	Capacity –	Pre/P	Post Pl	acement
------	-------------	------------	-------	---------	---------

Sample Description	Samples	Oil sorption capacity (%)
	1-1	71.70
	1-2	68.36
Raw Orgaoclay	1-3	68.61
(Control)	1-4	70.04
	1	average 69.68
	2-1	65.82
	2-2	64.88
As Manufactured	2-3	63.44
Organociay	2-4	60.59
	2	average 63.68
Sample Buckets -	3-1	62.86
(As-Placed	3-2	62.65
Material	3-3	61.40
Recovered from	3-4	61.99
River Bottom)	3	average 62.22

Oil Sorption Capacity (% dry wt.) for samples

Samples of material were sent to CETCO for testing utilizing Test Method: LP-Organoclay Powdered Sorption Oil Centrifuge-modified to 72 hours

Post-Placement Active Material Properties Confirmation Testing & Analysis

Did the Reactive Material Placed on the Sediment Surface Retain the Adsorptive Properties Assumed in the Design?

	NAP	PHE	PYR	BaP
log Kow	3.41	4.57	5.18	6.54
Kow	2,570	37,154	151,356	3,467,369
Sample #1	3,223	91,619	323,459	1,603,265
Std Dev	178	8,709	45,948	404,779
Sample #2	3,161	105,183	406,830	1,747,376
Std Dev	432	9,499	57,680	532,597
Sample #3	2,609	93,367	359,871	1,537,488
Std Dev	86	4,516	30,370	684,176
CETCO PM-199	3280	68,000	454,000	3,510,000
Std Dev		8,420	104,900	442,000
+/- 95% confidence	e interval	16,503	205.604	866.320

Texas Tech University Lab partition coefficients as a function of Kow.

Sample #1 – CETCO Powder OC as Received

Sample #2 – As Manufactured Coating, Prior to Placement

Sample #3 – Post Placement Sample Recovered From River

Octanol-water partition coefficients of PAHs and partition coefficients - standard deviation in estimate for the three tested organophilic clays. Values reported for CETCO PM-199 from TR-840[2]

Specification: "The organoclay shall have a documented partition coefficient (Kd) of at least 50,000 L/Kg for light weight PAHs (eg. phenanthrene) and 350,000 L/Kg for mid to heavy weight PAHs (eg. pyrene)."

Post-Placement Confirmation of Active Material Design Characteristics: Conclusions

- Ability to <u>confirm the quantity of high-value amendment material</u> (organoclay coating weight) being supplied and placed.
- Confirmation of material placement assumptions such as bulk density (determines layer thickness) which is critical to demonstration that this key design parameter is met.
- Verification of uniform distribution of active-treatment materials is achieved through the thickness of the capping layer.
- Enables ability to perform post-placement confirmation of active-treatment material testing of <u>adsorption capacity</u> (partition coefficient) that satisfies the specification.
- Modeling assumptions can be confirmed through comparison of input/assumptions to post-placement physical and material property data.
- Results can support modeling assumptions and be used to <u>reduce costs</u> <u>associated with excessive factors of safety</u> due to lack of certainty of achievement of a design / specification as well as the ability to provide postplacement verification.

Full-scale verification of quantity and post-placement material properties relative to project objectives

