Assessment of Flow-Through Media for Reducing PFAS Migration in Surface and Groundwater

March 11, 2020

John Collins, COO AquaBlok, Ltd.

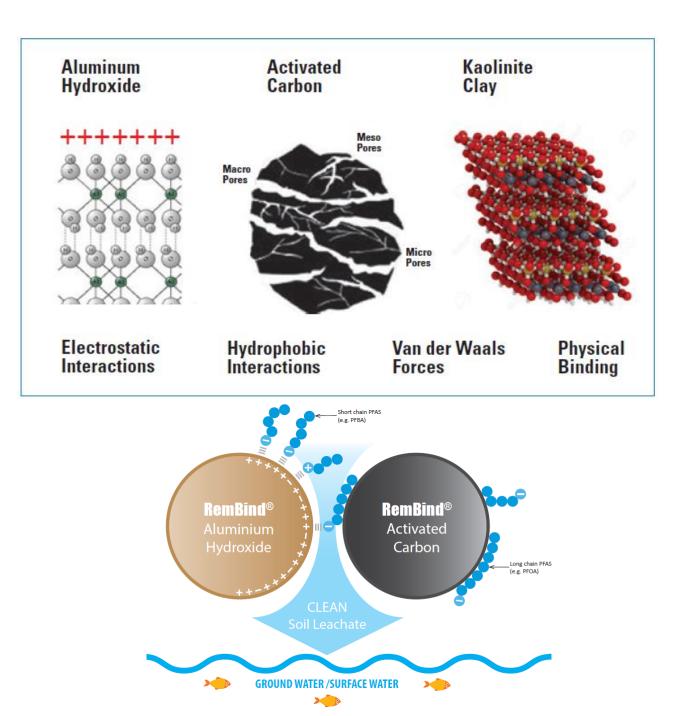
Nick Marquez, Rebecca Valkan

Topics for Discussion

- Background RemBind and AquaBlok Technology/ Experience
- BECCA Study & Results
 - Methodology
 - Jar Tests
 - Column Tests
 - Results
- Field Application Surface Water Application / PRB
- Other Case Studies
- Summary / Questions

RemBind[®] – Proven PFAS Immobilization Reagent

- A powdered reagent that binds PFAS in soil and water to prevent leaching or transport
- Developed with the Australian Government's leading national R&D organization: Commonwealth Scientific Industrial Research Organization (CSIRO)
- Independently verified by government airport authorities, Defence & industry worldwide
- Applied commercially at full-scale in Australia, Sweden, and the USA



How does RemBind[®] work?

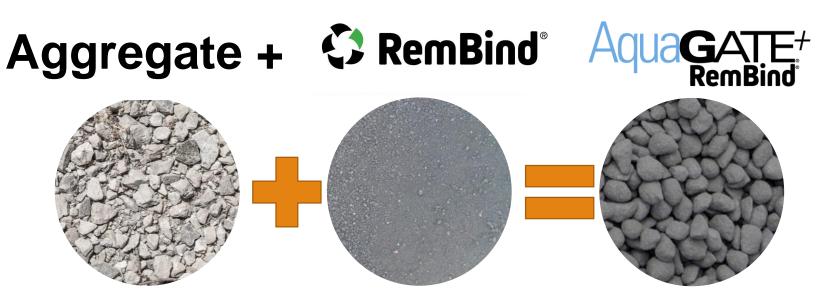
How effective is RemBind at binding PEAS?

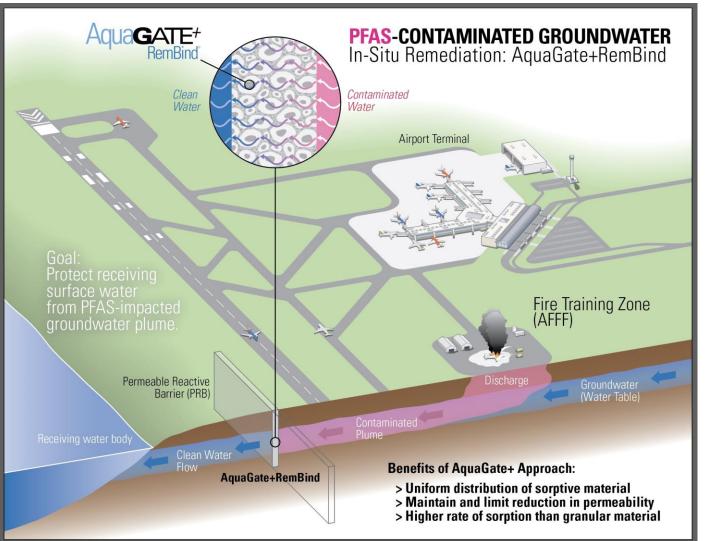
Leachability Characteristics of Per- and Polyfluoroalkyl Substances (PFAS) in 14 Soils from Airport Sites across Australia

Richard Stewart¹ and Ross McFarland²

PFAS Concentrations in Soil Leachates*												
Site	Soil Type	Product	Product Addition Rate % (w/w)	Before Treatment			After Treatment		Below NSW EPA Landfill Criteria?	PFOS Reduction	Passed USEPA	PFOS/Total PFAS***
				PFOS mg/kg	PFOS μg/L	PFOA μg/L	PFOS μg/L	PFOA μg/L	50 µg/L**	7/0	Method 1320?	%
1	Silty clay loam	RemBind Plus	5.0	0.74	34	0.65	0.29	<0.02	Yes	99.20	Yes	86
2	Silty clay	RemBind Plus	7.5	2.24	376	5.6	0.1	<0.02	Yes	99.97	Yes	67
3	Clay	RemBind Plus	5.0	20.9	695	11	1.5	<0.02	Yes	99.80	nt	99
4	Clayey silt (organic)	RemBind Plus	10.0	3.15	38	1.17	1.9	<0.02	Yes	95.00	Yes	99
5	Sand	RemBind Plus	5.0	1.26	1	1	<0.02	<0.02	Yes	>98.00	nt	99
6	Heavy clay	RemBind Flus	5.0	3.01	87	1.54	<0.02	<0.02	Yes	>99.98	nt	nt
7	Silty sand	RemBind Plus	5.0	7.25	190	0.05	0.05	<0.02	Yes	99.97	Yes	99
8	Clayey loam	RemBind Plus	5.0	1.45	62.5	2.7	<0.02	<0.02	Yes	>99.97	Yes	98
9	Clay/gravel (spill)	RemBind Plus	10.0	184	4,780	222	3.52	0.21	Yes	99.90	Yes	nt
10	Clay/gravel	RemBind Plus	5.0	1.24	72	0.7	0.1	<0.01	Yes	99.90	nt	66
11	Heavy clay	RemBind Plus	5.0	0.67	36	1	0.1	<0.01	Yes	99.70	nt	40
12	Clay	RemBind Plus	5.0	0.78	43	0.6	0.1	<0.01	Yes	99.80	nt	57
13	Silty clay	RemBind Plus	2.5	nt	120	0.51	0.16	<0.02	Yes	99.90	nt	67
14	Silty clay	RemBind Plus	2.5	nt	184	1.84	0.2	<0.02	Yes	99.89	nt	67

* As prepared by TCLP or ASLP at pH 5


** NSW landfill guidelines stipulate a soil leachate criteria of 50 μg/L for PFOS + PFHxS for general solid waste *** Ratio of total PFOS/total PFAS extended suite (20 analytes) run by Australian Laboratory Services TCLP = Toxicity Characteristic Leaching Procedure ASLP = Australian Standard Leaching Procedure nt = not tested


Adapting RemBind for Surface Water Applications

- Australian-sourced aggregate, coated with RemBind® using AquaGate Delivery Technology
- Typical particle diameter = 7-10mm
- Permeability = 3.8 x 10⁻⁴m/s, Determined using constant head method as per Australian Standard AS1289.6.7.1

Surface Water – Context

Need for Passive Removal of PFAS

- High volume but intermittent
- Relatively low concentration compared to wastewater and groundwater at airports
- Compared to other migratory paths:

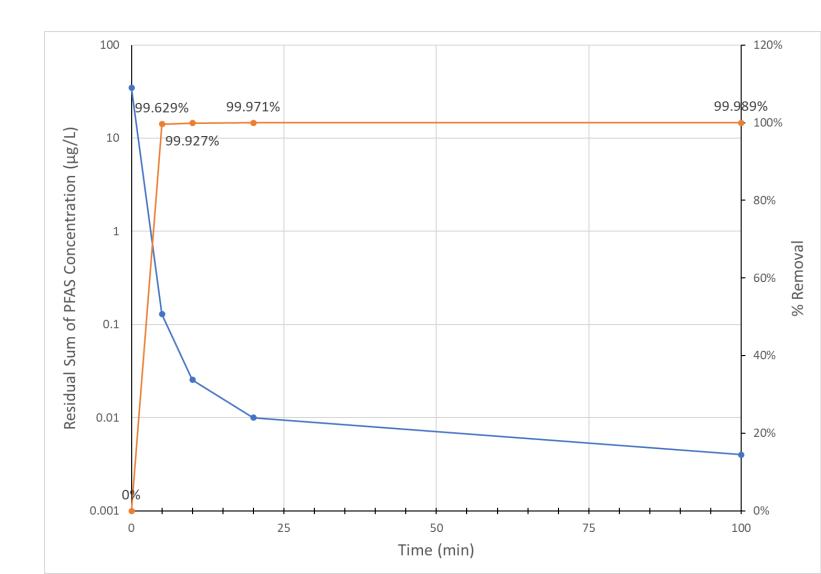
Wastewater – high co-contaminants (TPH), other products such as fluorine free foams and DCP, low volume

Groundwater – typically higher PFAS contamination levels, different cocontaminants depending on site



In Beca Test Methodology - Overview

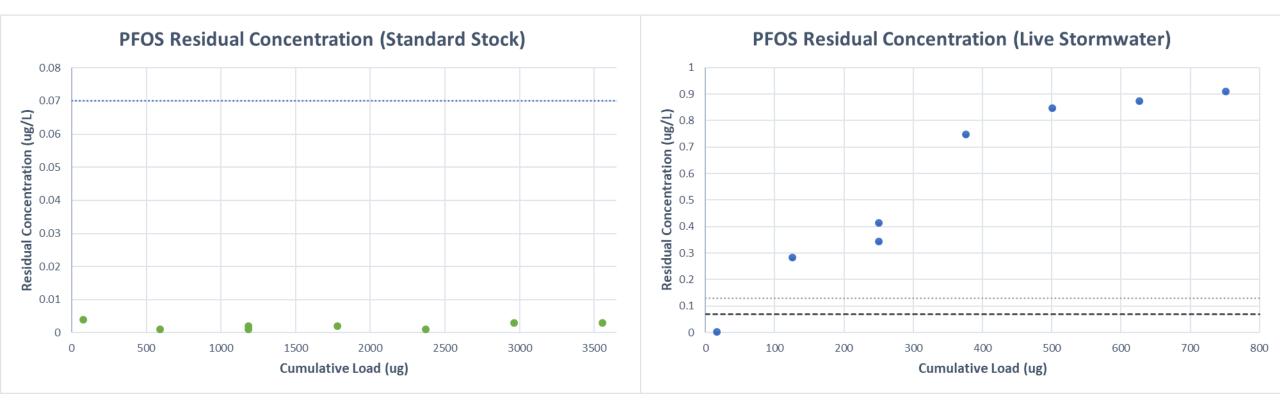
- 1. Adsorption Capacity Jar test to determine the sorption of RemBind®, as a coating material for AquaGate+RemBind material
- 2. Adsorption Kinetics Run above tests at different time frames to determine rate or speed of adsorption
- 3. Scale Up Perform column tests using Aquagate+RemBind to provide basis for determining breakthrough rates


In Beca Jar tests

- Jar test method adapted from ASTM D3860-98
- 3 stocks used: PFOS in solution, PFOA in solution, raw stormwater collected from airport
- Stock water aliquots dosed with differing RemBind[™] quantities plus product coingredients at product spec ratio
- Allowed to stir for 24 hrs
- Solutions targeting around the 50µg/L level

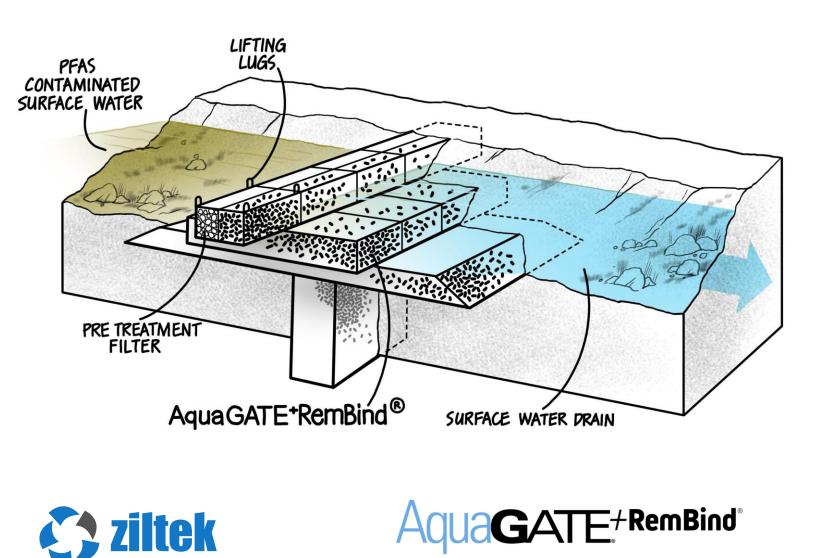
In Beca Jar Tests – Adsorption & Rate

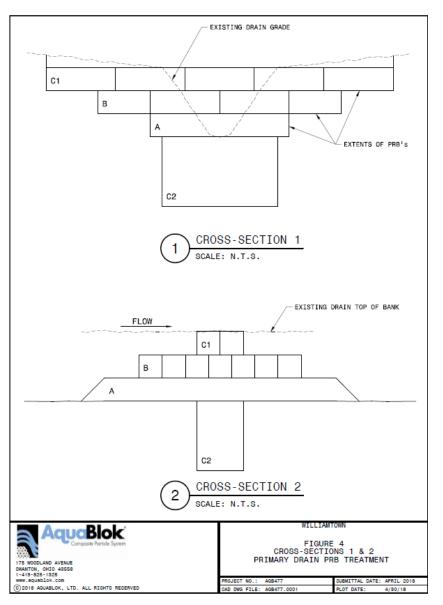
- 50 μg /L Starting Concentration
- 99.6% Reduction Completed in First 5 minutes of Contact
- 20min contact time selected for column test



III Beca Column tests

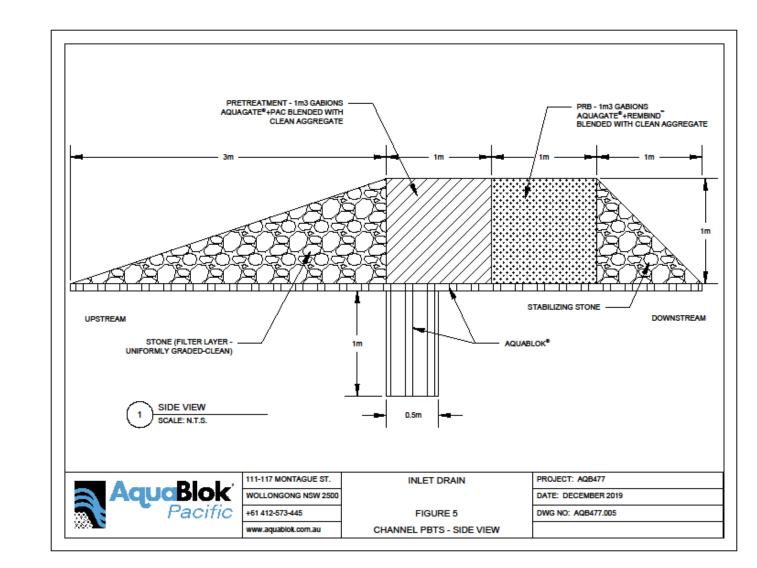
- Apparatus design and methodology adapted from Rapid Small-Scale Column Test (RSSCT)
- Column sizing to achieve scalable proportions and distribution through the column
- Permeability suggested negligible pressure drop
- Limited by volume at lab scale storage and cost of disposal of residual water

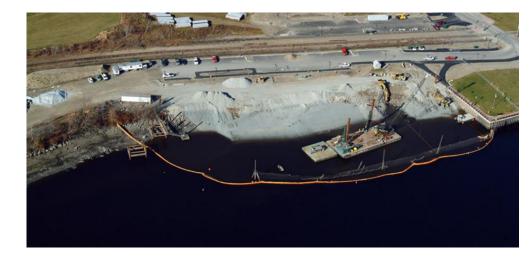



III Beca Column Test – PFOS Result

- Standard Stock Low Residual Maintained for 3,500 μg Load
- Live Stormwater Maintained below 1 ug/L for Over 800 μg Load Indicates Impact of TPH Competitive Sorption from Live Stormwater

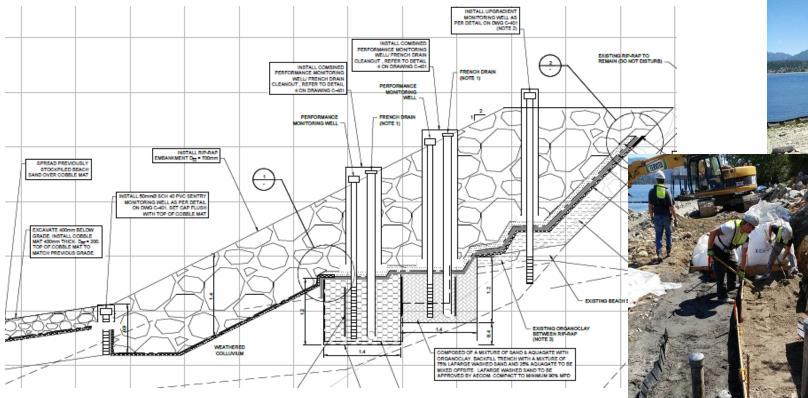
Application of Passive Flow-Through Design To Surface Water - Drainage Ditch (PRB)



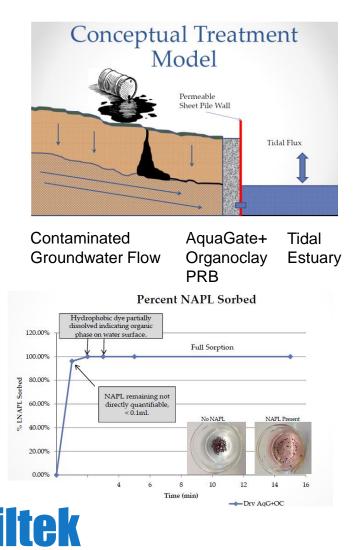

Key Design Parameters – AquaGate+RemBind

- PFAS Adsorption Capacity
 - $\circ~$ Approximately 1,000 μg of PFAS per gram of RemBind.
- Treatability based on Contact Time
 - A 5-minute contact time will provide a 99.6% reduction, extrapolated based on independent testing using spiked water with higher PFAS levels than the concentration typically assumed.
- Important Considerations:
 - Adsorption performance of RemBind will vary widely across different scenarios based on physical and chemical factors.

Other Case Studies - Installed Remediation Configurations


- Low-Permeability Sediment Cap
- Cut-off Wall
- Permeable Reactive Barrier (PRB)
- Landfill Cap Repair
- Thin-Layer Post-Dredge Backfill
- In-Situ Sediment Treatment
- Reactive Capping (Water)
- Funnel & Gate
- Upland Seep Zone Treatment

Passive Shoreline Permeable Reactive Barrier (PRB) to Address NAPL & Dissolved-Phase PAHs in Groundwater


Products Utilzed:

- AquaGate+Organoclay
- AquaGate+PAC
- AquaBlok 2080FW

Permeable Reactive Barrier (PRB) Installation

Funnel & Gate: Redirect Arsenic Seep to Adsorptive Treatment Materials – Limit Ptential Migration to Adjacent River

Site Location: U.S. EPA Region 5 Ohio DOT Project, Toledo, Ohio

- Contaminant(s) of Concern: Arsenic from historic accumulation of fill material
- AquaBlok Design / Site Area: The approach utilizes a "funnel & gate" treatment design with AquaGate+EHC-M reactive, treatment materials to address a seep zone. A low permeability AquaBlok layer directs the residual seep downward to the base of the slope through the permeable treatment zone. (EHC-M is a proprietary treatment material supplied by FMC Environmental)

Project Status: Completed September 2012

Use of AquaGate+EHC-M for Treatment of Arsenic Seep Zone

RCRA Metals

Arsenic Barium Cadmium Chromium Lead Selenium Silver Mercury

Before 60 mg/L 0.15 mg/L 0.0033 mg/L 0.067 mg/L 0.17 mg/L 0.81 mg/L 0.0034 mg/L ND mg/L

June13'	Aug13'	March14'		
ND mg/L	ND mg/L	ND mg/L		
0.12 mg/L	ND mg/L	0.1mg/L		
ND mg/L	ND mg/L	ND mg/L		
ND mg/L	ND mg/L	0.043 mg/L		
ND mg/L	ND mg/L	ND mg/L		
ND mg/L	ND mg/L	ND mg/L		
ND mg/L	ND mg/L	ND mg/L		
ND mg/L	ND mg/L	ND mg/L		

Summary – Q&A

AquaBlok as a Low-Permeability Material to Support Remediation Designs

- Permeable Treatment Material for Groundwater & Sediment Remediation Applications
- Rapid Installation Using Conventional Equipment
- Proven Full-Scale Production On-Site Manufacturing

Contact Information:

John A. Collins – jcollins@aquablok.com 175 Woodland Ave. Swanton, Ohio 43558

Richard Stewart TechInSA Building, 2 Ann Nelson Dr, Thebarton SA 5031, Australia

